A Spectral Difference method for viscous compressible flows with shocks

نویسندگان

  • Sachin Premasuthan
  • Chunlei Liang
  • Antony Jameson
چکیده

The current work focuses on applying an artificial viscosity approach to the Spectral Difference (SD) method to enable high-order computation of compressible fluid flows with discontinuities. The study uses an artificial viscosity approach similar to the high-wavenumber biased artificial viscosity approach introduced by Cook and Cabot, and modified by Kawai and Lele. The model employs a bulk viscosity for treating shocks, a shear viscosity for treating turbulence, and an artificial conductivity to handle contact discontinuities. The high-wavenumber biased viscosity is found to stabilize numerical calculations and reduce oscillations near discontinuities. Promising results are demonstrated for 1-D and 2-D test problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

Spectral difference method for compressible flow on unstructured grids with mixed elements

This paper presents the development of a 2D solver for inviscid and viscous compressible flows using the spectral difference (SD) method for unstructured grids with mixed elements. A mixed quadrilateral and triangular grid is first refined using one-level h-refinement to generate a quadrilateral grid while keeping the curvature of boundary edges. The SD method designed for quadrilateral meshes ...

متن کامل

A p-Multigrid Spectral Difference method for viscous compressible flow using 2D quadrilateral meshes

The work focuses on the development of a 2D quadrilateral element based Spectral Difference solver for viscous flow calculations, and the application of the p-multigrid method and implicit time-stepping to accelerate convergence. This paper extends the previous work by Liang et al (2009) on the p-multigrid method for 2D inviscid compressible flow, to viscous flows. The high-order spectral diffe...

متن کامل

Stability of Viscous Shocks in Isentropic Gas Dynamics

In this paper, we examine the stability problem for viscous shock solutions of the isentropic compressible Navier–Stokes equations, or p-system with real viscosity. We first revisit the work of Matsumura and Nishihara, extending the known parameter regime for which small-amplitude viscous shocks are provably spectrally stable by an optimized version of their original argument. Next, using a nov...

متن کامل

A preconditioned solver for sharp resolution of multiphase flows at all Mach numbers

A preconditioned five-equation two-phase model coupled with an interface sharpening technique is introduced for simulation of a wide range of multiphase flows with both high and low Mach regimes. Harten-Lax-van Leer-Contact (HLLC) Riemann solver is implemented for solving the discretized equations while tangent of hyperbola for interface capturing (THINC) interface sharpening method is applied ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009